Package: LPRelevance 3.3

LPRelevance: Relevance-Integrated Statistical Inference Engine

Provide methods to perform customized inference at individual level by taking contextual covariates into account. Three main functions are provided in this package: (i) LASER(): it generates specially-designed artificial relevant samples for a given case; (ii) g2l.proc(): computes customized fdr(z|x); and (iii) rEB.proc(): performs empirical Bayes inference based on LASERs. The details can be found in Mukhopadhyay, S., and Wang, K (2021, <arxiv:2004.09588>).

Authors:Subhadeep Mukhopadhyay, Kaijun Wang

LPRelevance_3.3.tar.gz
LPRelevance_3.3.zip(r-4.5)LPRelevance_3.3.zip(r-4.4)LPRelevance_3.3.zip(r-4.3)
LPRelevance_3.3.tgz(r-4.4-any)LPRelevance_3.3.tgz(r-4.3-any)
LPRelevance_3.3.tar.gz(r-4.5-noble)LPRelevance_3.3.tar.gz(r-4.4-noble)
LPRelevance_3.3.tgz(r-4.4-emscripten)LPRelevance_3.3.tgz(r-4.3-emscripten)
LPRelevance.pdf |LPRelevance.html
LPRelevance/json (API)

# Install 'LPRelevance' in R:
install.packages('LPRelevance', repos = c('https://kaijunwang19.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 181 downloads 20 exports 85 dependencies

Last updated 3 years agofrom:1e3fb4acc1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:eLP.polyeLP.poly.predicteLP.univarfdr.threshg2l.inferg2l.infer.bootg2l.procg2l.samplerget_bh_thresholdgetNullProbLASERLASER.rEBLP.post.convLP.smoothLPcdenLPregressionPredict.LP.polyrEB.Finite.BayesrEB.procz.lp.center

Dependencies:BayesGOFBolstad2caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavaleapslifecyclelistenvlocfdrlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnleqslvnlmennetnumDerivorthopolynomparallellypillarpkgconfigplyrpolynompROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppEigenrecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsVGAMviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Relevance-Integrated Statistical Inference EngineLPRelevance-package eLP.poly eLP.poly.predict eLP.univar LP.smooth LPcden LPregression LPRelevance Predict.LP.poly
DTI data.data.dti
A stylized simulated example.funnel
Procedures for global and local inference.fdr.thresh g2l.infer g2l.infer.boot g2l.proc getNullProb get_bh_threshold
Kidney data.kidney
Generates Artificial RELevance Samples.g2l.sampler LASER z.lp.center
Relevance-Integrated Finite Bayes.rEB.Finite.Bayes
Relevance-Integrated Empirical Bayes InferenceLASER.rEB LP.post.conv rEB.proc